On Expressiveness of the AMP Chain Graph Interpretation

نویسنده

  • Dag Sonntag
چکیده

In this paper we study the expressiveness of the AnderssonMadigan-Perlman interpretation of chain graphs. It is well known that all independence models that can be represented by Bayesian networks also can be perfectly represented by chain graphs of the Andersson-MadiganPerlman interpretation but it has so far not been studied how much more expressive this second class of models is. In this paper we calculate the exact number of representable independence models for the two classes, and the ratio between them, for up to five nodes. For more than five nodes the explosive growth of chain graph models does however make such enumeration infeasible. Hence we instead present, and prove the correctness of, a Markov chain Monte Carlo approach for sampling chain graph models uniformly for the Andersson-Madigan-Perlman interpretation. This allows us to approximate the ratio between the numbers of independence models representable by the two classes as well as the average number of chain graphs per chain graph model for up to 20 nodes. The results show that the ratio between the numbers of representable independence models for the two classes grows exponentially as the number of nodes increases. This indicates that only a very small fraction of all independence models representable by chain graphs of the Andersson-Madigan-Perlman interpretation also can be represented by

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On expressiveness of the chain graph interpretations

In this article we study the expressiveness of the different chain graph interpretations. Chain graphs is a class of probabilistic graphical models that can contain two types of edges, representing different types of relationships between the variables in question. Chain graphs is also a superclass of directed acyclic graphs, i.e. Bayesian networks, and can thereby represent systems more accura...

متن کامل

A Graphical Representation of Equivalence Classes of AMP Chain Graphs

This paper deals with chain graph models under alternative AMP interpretation. A new representative of an AMP Markov equivalence class, called the largest deflagged graph, is proposed. The representative is based on revealed internal structure of the AMP Markov equivalence class. More specifically, the AMP Markov equivalence class decomposes into finer strong equivalence classes and there exist...

متن کامل

Factorization, Inference and Parameter Learning in Discrete AMP Chain Graphs

We address some computational issues that may hinder the use of AMP chain graphs in practice. Specifically, we show how a discrete probability distribution that satisfies all the independencies represented by an AMP chain graph factorizes according to it. We show how this factorization makes it possible to perform inference and parameter learning efficiently, by adapting existing algorithms for...

متن کامل

Learning AMP Chain Graphs under Faithfulness

This paper deals with chain graphs under the alternative Andersson-Madigan-Perlman (AMP) interpretation. In particular, we present a constraint based algorithm for learning an AMP chain graph a given probability distribution is faithful to. We also show that the extension of Meek’s conjecture to AMP chain graphs does not hold, which compromises the development of efficient and correct score+sea...

متن کامل

A note on polyomino chains with extremum general sum-connectivity index

The general sum-connectivity index of a graph $G$ is defined as $chi_{alpha}(G)= sum_{uvin E(G)} (d_u + d_{v})^{alpha}$ where $d_{u}$ is degree of the vertex $uin V(G)$, $alpha$ is a real number different from $0$ and $uv$ is the edge connecting the vertices $u,v$. In this note, the problem of characterizing the graphs having extremum $chi_{alpha}$ values from a certain collection of polyomino ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014